ROUTE CORRIDOR SELECTION REPORT

VOLUME: 1 – MAIN TEXT
Leitrim County Council

N4 Carrick-on-Shannon to Dromod Road Project

Route Corridor Selection Report
Volume 1 – Main Text

Document No: 34

Made: ... Barry Corrigan

Checked..................................... Richard Power

Approved Garry Smyth

<table>
<thead>
<tr>
<th>Description</th>
<th>Issue</th>
<th>Made</th>
<th>Checked</th>
<th>Approved</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route Corridor Selection Report</td>
<td>Issue 01</td>
<td>BC</td>
<td>RTP</td>
<td>GPS</td>
<td>16/02/11</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS – VOLUME 1

Executive Summary

Chapter 1 Introduction
 1.1 Extent of the Road Scheme ... 1/1
 1.2 Scheme Objectives .. 1/1
 1.3 Purpose of this Report .. 1/1
 1.4 Structure of this Report .. 1/2
 1.5 Difficulties Encountered .. 1/2

Chapter 2 Need for the Scheme
 2.1 Introduction .. 2/1
 2.2 The Previous Study on N4 Carrick-on-Shannon Bypass 2/2
 2.3 Strategic and Local Policy Context .. 2/2

Chapter 3 Constraints Study
 3.1 Introduction .. 3/1
 3.2 Defining the Constraints Study Area (Northern Section) 3/1
 3.3 Defining the Constraints Study Area (Southern Section) 3/3
 3.4 Public Consultation No.1 ... 3/4
 3.5 Collection of Environmental Data ... 3/5

Chapter 4 Engineering Parameters
 4.1 National Design Standards ... 4/1
 4.2 Proposed Design Speed ... 4/1
 4.3 Traffic Flow Information ... 4/1
 4.4 Cross-Section ... 4/1
 4.5 Horizontal Design Standards ... 4/2
 4.6 Vertical Design Standards ... 4/2
 4.7 Junction Design Standards ... 4/3
 4.8 Access to Private Land and Houses off Type 2 Dual Carriageway 4/3
 4.9 Drainage Design Standards ... 4/3

Chapter 5 Route Corridors
 5.1 Initial Assessment of Options .. 5/1
 5.2 Section, Node and Link Numbering ... 5/1
 5.3 Route Corridor Options under Consideration 5/2

Chapter 6 Public Consultation No. 2
 6.1 Introduction .. 6/1
 6.2 Methodology ... 6/1
 6.3 Analysis of Responses .. 6/3
Chapter 7 Planning, Land-Use & Socio Economic Impacts

7.1 Introduction .. 7/1
7.2 Route Corridor Options ... 7/1
7.3 Assessment Methodology .. 7/1
7.4 Strategic Planning Impacts .. 7/2
7.5 Regional and Local Planning Impacts .. 7/3
7.6 Land-use Impacts ... 7/7
7.7 Socio-Economic Impacts ... 7/9
7.8 Accessibility, Social Inclusion & Integration .. 7/20
7.9 Ranking of Route Corridor Options .. 7/21

Chapter 8 Noise & Vibration

8.1 Introduction .. 8/1
8.2 Methodology... 8/1
8.3 Assessment of Route Corridor Options .. 8/1

Chapter 9 Air Quality & Climate

9.1 Introduction .. 9/1
9.2 Assessment Methodology .. 9/1
9.3 Baseline Air Quality .. 9/1
9.4 Sensitive Receptors ... 9/3
9.5 Impacts on Sensitive Receptors ... 9/3
9.6 Calculation of the Index of Overall Change in Exposure 9/4
9.7 Conclusion ... 9/5
9.8 References... 9/6
9.9 Glossary... 9/6
9.10 Climate... 9/23

Chapter 10 Terrestrial Ecology

10.1 Introduction .. 10/1
10.2 Methods ... 10/1
10.3 Assessment of Route Corridors .. 10/3
10.4 Comparative Evaluation of Route Corridors ... 10/22
10.5 References & Bibliography ... 10/29

Chapter 11 Aquatic Ecology

11.1 Introduction .. 11/1
11.2 Methodology .. 11/1
11.3 Existing Aquatic Environment ... 11/2
11.4 Route Corridor Options .. 11/3
11.5 Mitigation of Impacts .. 11/6
11.6 Conclusions ... 11/7
Chapter 17 Traffic Assessment, Economic Assessment & Road Safety
 17.1 Traffic Assessment .. 17/1
 17.2 Economic Assessment of Route Options ... 17/8
 17.3 Road Safety .. 17/11

Chapter 18 Development of the Preferred Route Corridor (Matrices)
 18.1 Route Corridor Option Assessment ... 18/1

Chapter 19 Public Consultation No. 3
 19.1 Introduction ... 19/1
 19.2 Methodology .. 19/1
 19.3 Analysis of Individual Submission Responses ... 19/3

Chapter 20 Recommendations .. 20/1
N4 Carrick-on-Shannon to Dromod Road Project

Route Corridor Selection Report

Executive Summary

TABLE OF CONTENTS

1.0 Introduction ... E2
2.0 Need for the Scheme .. E2
3.0 Constraints Study .. E2
4.0 Engineering Parameters ... E3
5.0 Route Corridor Options ... E3
6.0 Public Consultation No. 2 .. E4
7.0 Planning, Land-use and Socio-economic Impact E4
8.0 Noise and Vibration .. E5
9.0 Air Quality .. E5
10.0 Terrestrial Ecology ... E6
11.0 Aquatic Ecology ... E6
12.0 Architecture, Archaeology and Cultural Heritage E7
13.0 Agriculture .. E7
14.0 Landscape and Visual Impact ... E8
15.0 Engineering Assessment ... E8
16.0 Geology, Hydrology and Hydrogeology E9
17.0 Traffic .. E11
18.0 Development of the Emerging Preferred Route Corridor E12
19.0 Public Consultation No. 3 .. E12
20.0 Recommendations ... E12
Part I
Background Information

1.0 Introduction

This Route Corridor Selection Report for the proposed N4 Carrick-on-Shannon to Dromod Road Project has been prepared by Roughan & O’Donovan Consulting Engineers on the instruction of Leitrim County Council.

The purpose of the Route Corridor Selection Report is to present the technical and environmental evaluation of the options presented in Public Consultation No. 2 (September 2009) and to outline the process by which an Emerging Preferred Route Corridor was selected.

2.0 Need for the Scheme

The National Primary N4, Dublin to Sligo Route is a strategic corridor from Dublin to the northwest and border counties. The need to upgrade it is recognised in the National Spatial Strategy, the National Development Plan and the Transport 21 framework and the County Development Plans.

The road network around Carrick-on-Shannon consists primarily of a number of radial routes emanating from Carrick-on-Shannon and Cortober. At present the existing N4 relief road which avoids the town centre provides some relief to this existing situation. However, the need for all traffic to cross the Shannon via a single bridge combined with a narrow carriageway, frequency of sharp bends and associated junctions continues to result in significant traffic congestion, especially during peak periods. At present the convergence of national, regional and local traffic in the centre of Carrick-on-Shannon causes considerable congestion and significant delays to through traffic.

This section of the proposed scheme also has a high accident history as a result of high traffic volumes, poor road alignment and multiple junctions. The fundamental need for the scheme is, therefore, to provide a high quality link along the section of the N4 within the study area.

3.0 Constraints Study

In order to define the Constraints Study area, a significant data collection exercise was undertaken at the very earliest stages of the project. This focussed on determining the physical, environmental and engineering constraints that exist and could affect the location, design and progress of the scheme.

This information was used to define a feasible study area by developing inner and outer most feasible boundaries and eliminating those areas where it is not considered feasible to locate a route. This information is available at Chapter 3 and in the Constraints Study.

A Public Consultation No. 1 was held in May and June 2009 where the Constraints Study Area was presented to the public.
A Constraints Study Report was produced detailing all of the information collected during this study and explaining the decisions that were made.

4.0 Engineering Parameters

The design standards for the scheme are the National Roads Authority’s Design Manual for Roads & Bridges (the NRA DMRB).

The proposed cross-section for the new mainline road is that of a Type 2 Dual Carriageway in compliance with the NRA DMRB TD27. In general, the following road cross-section applies to the mainline:

- 1 x 1.5m wide central reserve with wire rope traffic separation barrier;
- 2 x 7.0m carriageways, with 2 traffic lanes in each direction;
- 2 x 0.5m hard strips;
- 2 x 3.0m nearside verges (including hard strips), with widening to provide adequate Stopping Sight Distance (SSD) and provision for non-motorised users;
- Road paved width: 16.5m;
- Overall width to back of verges: 21.5m minimum;

Junction type will vary along the proposed new road with the classification of the road crossing. In general, on Type 2 Dual Carriageway sections the following junction types are permitted:

- Roundabouts,
- Compact Grade Separated Junctions &
- Left in / left out junctions.

Access to private lands and houses off the Type 2 Dual Carriageway will be, where possible avoided by diverting either the house access or access tracks onto the local road network. By limiting the number of accesses onto the new proposed Type 2 Dual Carriageway the overall safety of the road will be improved. Where access cannot be gained to private land or houses via local roads or access tracks, consideration may be given to the use of a left in / left out junction.

5.0 Route Corridor Options

A number of initial Route Corridor Options were developed based on information recorded in the Constraints Study and taking into account the Preferred Route Corridor from the previous study for the Carrick-on-Shannon Bypass in 2001/2002. Further potential route corridor options were developed based on the environmental, archaeological, social, geological and topographical constraints. Engineering parameters such as length of new construction, number of river crossings, railway crossings and connectivity to Carrick-on-Shannon were also taken into account. The development of routes was also limited by the amount of ribbon development along the existing road network.

In order to assess the Route Corridor Options the study area was defined as Section 1 and Section 2. There are 5 Route Corridor Options in Section 1, three to the north of Carrick on Shannon and two to the south of the town; and 3 route corridor options in Section 2 one off line option to the east of the N4 and two online retrofits, one bypassing Aghamore village to the east and another to the west. These options were presented to the public for their consideration and comment.
Part II
Assessment of Route Corridor Options

The potential impact of each route corridor option was assessed against a stringent series of environmental, engineering, economic and social parameters. For each parameter the route corridor options are ranked from preferred to least preferred.

6.0 Public Consultation No. 2

Public Consultation No. 2 was undertaken between September 2009 and October 2009 with the public consultation exhibitions being held on the 9th and 10th of September 2009 in the Landmark Hotel in Carrick-on-Shannon.

A total of 112 people attended the consultation exhibitions over the two days. The highest number (62) attended on the second evening 10th September with 50 attending on the 9th September.

A total of 133 responses were received. In Section 1, the results show a clear preference for a northern bypass of Carrick-on-Shannon with 81% of responses preferring Route Corridor Options 1.1, 1.2 or 1.3 over a southern bypass (1.4/1.5). Of the northern bypass options Route Corridor Option 1.2 was the preferred route corridor with 1.1 a close second and 1.3 which was the previously protected route for a Carrick-on-Shannon Bypass as third choice.

In Section 2 all three options received a very similar number of votes with Route Corridor Option 2.3 just slightly ahead of eastern bypass of Aghamore (2.2) and Route Corridor Option 2.1 in third.

7.0 Planning, Land-use and Socio-economic Impact

Chapter 7 outlines the findings of the planning, land-use and socio-economic assessment of the route corridor options. The planning aspects are presented in the context of the impacts on existing strategic and regional planning policy. The impact on land-use examines the potential impact of each route corridor option on residential, community and commercial property and planning applications in close proximity to the route corridor options. The socio-economic impact is examined in terms of impacts on journey length, community severance, existing amenity and potential economic impacts.

The conclusion reached is that the assessment does not identify any issues which are profound enough in their impact to rule out any route corridor. For Section 1 the primary finding is that Route Corridor Option 1.4 will have a higher impact than the other route corridor options. This is a direct consequence of its impact on Cortober. For Section 2 the main issue is the degree of severance which will occur as a result of the online elements of Route Corridor Options 2.2 and 2.3, as compared to the off line option - Route Corridor Option 2.1.

In terms of planning the preferred route corridors in Section 1 are Route Corridor 1.1, 1.2 and 1.3 while Route Corridor 2.1 is preferred in Section 2. On socio-economic grounds Route Corridor 1.1 is preferred in Section 1 with Route Corridor 2.1 preferred in Section 2.
8.0 Noise and Vibration

Chapter 8 of the Route Corridor Selection Report has been completed in accordance with the NRA Guidelines for the Treatment of Noise and Vibration in National Road Schemes (Revision 1, 25th October 2004). The NRA Guidelines state the elements that need to be assessed as part of the noise assessment section of the route corridor selection study:

“These elements consist of an assessment of potential impact based upon property counts, consideration of likely changes in traffic flow and a review of the need for, and difficulties associated with, noise mitigation measures. Once these three elements have received detailed consideration, route corridor options should be ranked with respect to noise.”

In order to weight each route corridor option the total number of properties within each of the following bands is counted. The four bands are as follows:

- Band 1 is from 0 to 50m of the centre line;
- Band 2 is from 50 to 100m of the centre line;
- Band 3 is from 100 to 200m of the centre line; and
- Band 4 is from 200 to 300m of the centre line.

In order to quantify the potential impact of each route a rating is applied to each band and the subsequent total for each route corridor option, the Potential Impact Rating, is used to comparatively assess the route corridor options.

This assessment highlights the fact that for both Sections 1 and 2 the route corridor options with least impact are those furthest from the main urban areas. For Section 1, the route corridor with the longest offline section is Option 1.5 and hence has the least impact, whereas 1.4, which passes through Cortober has the greatest impact. For Section 2 the offline element, route option 2.1, has clearly less impact than the two online route corridor options.

This assessment was further refined by addressing more closely only those properties within the 100m band and those areas where the construction of noise mitigation measure would not be possible. Route Corridor 1.5 is the preferred route corridor for Section 1 with Route Corridor 1.4 the least preferred. In Section 2, Route Corridor 2.1 is preferred while Route Corridor 2.3 is least preferred.

9.0 Air Quality

AWN Consulting used the UK DMRB air dispersion model to determine the impact of each of the routes on ambient levels of NO$_x$ at the Lough Drumharlow proposed pNHA. Predicted NO$_x$ concentrations are lower than the limit value for the protection of ecosystems for each of the locations assessed.

The Index of Overall Change in Exposure identified the number of sensitive receptors (residential properties) within 50m of the edge of all road links that would experience a significant change in traffic for each of the route corridors. The analysis was carried out using the methodology of the NRA using the UK DMRB air dispersion model.

The route corridor options with the lowest exposure index are the preferred options from an air quality perspective, as they lead to the smallest increases (or greatest
decreases) in air pollution. The results of the Index of Overall Change in Exposure have been used to rank the route options in order of their potential impact on air quality as shown below:

Route Corridor 1.1 shows the greatest improvement while Route Corridor 1.4 shows least improvement. In Section 2, Route Corridor 2.1 shows greatest improvement while Route Corridor 2.3 shows least improvements. However the results show that all routes would have a moderately positive impact on ambient air quality.

10.0 Terrestrial Ecology

As part of the process to select a preferred route, the terrestrial ecological interests along the route corridors have been described and assessed in Chapter 10 and a comparative evaluation of route corridor options has been made.

Eleven ecological receptors were identified during the ecological assessment which was undertaken in accordance with the NRA Guidelines for Assessment of Ecological Impacts of National Road Schemes, Rev 2, 01st June 2009. There are no designated sites of International importance (candidate Special Areas of Conservation, Special Protection Areas) affected by any of the route corridors. One designated site of National importance, Lough Drumharlow pNHA is affected by all three of the northern route corridor options. There is also a small area of riparian located woodland which is linked to the priority Annex I habitat “alluvial forests” on the western bank of the northern River Shannon crossing and is also impacted by the three northern route corridors. This stand of trees is also of National importance. There are two further sites of county importance located at the southern River Shannon Crossing and Route Corridor 1.5 will impact on these receptors.

The route corridor options are subsequently ranked with respect to the number and importance of ecological receptors impacted. This assessment concludes that in Section 1, Route Corridor Option 1.1 will have the greatest ecological impact, and Route Corridor Option 1.4 will have the least impact. In Section 2 there is no discernible difference with respect to the online options, Route Corridor Options 2.2 and 2.3, while the offline option, Route Corridor Option 2.1, is considered as having a greater ecological impact.

11.0 Aquatic Ecology

EirEco Environmental Consultants identified the watercourses within the study area and having determined which would be impacted by the various route corridor options, a site visit was undertaken to evaluate each watercourse on the basis of its size, flow characteristics and water quality, potential for supporting fisheries and protected species, and associated habitats. Subsequently an evaluation was ascribed and assessment of the potential impact determined for each watercourse following the NRA Criteria for Assessing Impact Significance on Terrestrial and Aquatic sites.

For each route corridor option, the total number of watercourses impacted, their evaluation, and the scale of impact is determined. The impact significance is considered on the basis of mitigation being applied. The cumulative impact of each route corridor option on watercourses is then tallied and compared between routes in order to assign a ranking of route corridor options.
The results of this ranking are given below:

Section 1

<table>
<thead>
<tr>
<th>Route Corridor</th>
<th>Number of crossings</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>10 crossings. Impacting on R. Shannon at one location. Remainder low local value.</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>13 crossings. Impacting on R. Shannon at two locations. Remainder low local value.</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>9 crossings. Impacting on R. Shannon at three locations. Remainder low local value.</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>11 crossings. Impacting on R. Shannon at three locations. Also crossing two streams high local value.</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>14 crossings. Impacting on R. Shannon at four locations. Also crossing three streams high local value.</td>
<td>5</td>
</tr>
</tbody>
</table>

Section 2

<table>
<thead>
<tr>
<th>Route Corridor</th>
<th>Number of crossings</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>4 crossings, two of high local value.</td>
<td>1</td>
</tr>
<tr>
<td>2.2</td>
<td>3 crossings including impacting on Gortinty Lough (county value)</td>
<td>2</td>
</tr>
<tr>
<td>2.3</td>
<td>3 crossings including impacting on Gortinty Lough (county value)</td>
<td>2</td>
</tr>
</tbody>
</table>

12.0 Architecture, Archaeology and Cultural Heritage

CRDS Ltd. undertook this assessment which involved a desk-based study of relevant sources, complemented by a windshield survey and field assessment carried out in October 2009 to examine sites of archaeological, architectural and cultural heritage constraints and to determine their current extent and condition.

The routes are ranked on the basis of the number of archaeological, architectural and cultural heritage sites impacted and the type and significance of the likely impact.

The Emerging Preferred Route Corridor on the grounds of archaeological and cultural heritage is Route Corridor 1.4 for Section 1 in combination with Route 2.1 for Section 2. The Emerging Preferred Route Corridor on the grounds of architectural heritage is Route Corridor 1.3 for Section 1 in combination with Route 2.1 for Section 2.

13.0 Agriculture

Philip Farrelly & Co. Agricultural Consultants undertook the study which consisted of a desktop study of available information, a roadside inspection of land and farming practices and consultation with local sources for the area.

The agricultural assessment was prepared under several separate headings including Landtake, Severance, Land Quality, Land Use and Farmyard Disturbance.
The assessment finds that the greatest impact on agriculture will occur on the route options which have the greatest offline length (i.e. Route Corridor Option 1.5 in Section 1 and Route Corridor Option 2.1 in Section 2). Those route corridors with the shortest length affecting agricultural lands are preferred, namely Route Corridor 1.4 in Section 1 and Route Corridor 2.2 in Section 2.

14.0 Landscape and Visual Impact

Landscape Impacts are defined as changes in the fabric, character and quality of the landscape and the level of impact depends on:

- The extent of the impact upon specific landscape elements;
- The extent of the impact on any sensitive or designated landscape, amenity or conservation area; and
- Degree of effects on the overall landscape pattern.

In Section 1, Route Corridor Option 1.4 has the least landscape impact as a consequence of having the shortest offline length, shortest Shannon Crossing and shortest length of cut and fill. Route Corridor Option 1.1 has the greatest impact. In Section 2 the offline route corridor option 2.1 clearly has the greatest landscape impact.

Visual impacts are defined as changes in the fabric, character and quality of the visual environment. The level of impact will depend on:

- The direct impact of the development on recognised views;
- The reaction of viewers, in both numerical terms and viewing location; and
- The level of impact on visual amenity.

In Section 1 as would be expected the more rural Route Corridor Options 1.1 and 1.5 have the least visual impact in terms of properties impacted and Route Corridor Option 1.4 has clearly the greatest impact as a consequence of its proximity to and impact on Cortober.

In Section 2, Route Corridor Option 2.3 actually has a lesser impact than the other route corridor options as a result of the reduced number of properties which it will impact.

15.0 Engineering Assessment

An assessment of each of the route corridors has been completed against a broad range of engineering parameters. This covers elements such as route length, complexity of the River Shannon crossing, the number of railway bridges, etc.

The number and length of river, road and railway bridges and approaches through floodplain was a significant factor in determining the cost of each route corridor. The tables below gives a quantitative assessment of the number of side roads and bridges and left in / left out junctions required along each route corridor option.
Table 15.1 Overbridge / Underbridge

<table>
<thead>
<tr>
<th>Route</th>
<th>Node Details</th>
<th>Overbridge</th>
<th>Underbridge</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A-F-G-H-M-B</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>A-F-G-H-L-B</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>A-F-G-I-B</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>A-E-J-B</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>A-D-K-B</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>B-N-C</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>B-O-P-C</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.3</td>
<td>B-O-P-C</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: Table excludes bridges as part of major junctions

Table 15.2 Left-in/Left-out Junctions

<table>
<thead>
<tr>
<th>Route</th>
<th>Node Details</th>
<th>Left-in/Left-out Junctions</th>
<th>House Access</th>
<th>Field Access</th>
<th>Local Roads</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>A-F-G-H-M-B</td>
<td></td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>A-F-G-H-L-B</td>
<td></td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>A-F-G-I-B</td>
<td></td>
<td>9</td>
<td>20</td>
<td>4</td>
<td>33</td>
</tr>
<tr>
<td>1.4</td>
<td>A-E-J-B</td>
<td></td>
<td>9</td>
<td>20</td>
<td>4</td>
<td>33</td>
</tr>
<tr>
<td>1.5</td>
<td>A-D-K-B</td>
<td></td>
<td>0</td>
<td>11</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>2.1</td>
<td>B-N-C</td>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.2</td>
<td>B-O-P-C</td>
<td></td>
<td>15</td>
<td>28</td>
<td>8</td>
<td>51</td>
</tr>
<tr>
<td>2.3</td>
<td>B-O-P-C</td>
<td></td>
<td>15</td>
<td>30</td>
<td>8</td>
<td>53</td>
</tr>
</tbody>
</table>

The estimated cost of each element of the route corridors was calculated to create a predicted cost of each route corridor option. For Section 1 Route Corridor Option 1.3 has the lowest overall cost, although it is closely followed by Route Corridor 1.4. For Section 2, the two online options, 2.2 and 2.3, demonstrate a substantially lower overall cost than the offline option, Route Corridor 2.1.

16.0 Geology, Hydrology and Hydrogeology

Geology

Section 1

The route corridors were compared on geotechnical criteria for the length of the Route that passed through or impacted a) soft alluvium b) peat and fen deposits c) licensed waste permit sites and d) the extent of unfavourable soil and access conditions on the River Shannon bridge approach. Other factors relating to Karst, Land Use, Economic Geology and Geological Heritage are not likely to have significant impact for any of the alternative route corridors and therefore were not ranked.
Route Corridor 1.3 is the only route corridor in proximity to the Ballynamony landfill, no other bypass option is located close to known landfills or waste permit sites.

The Shannon bridge crossing was ranked on the accessibility of access roads and the length of soft ground that the approach embankment would be founded on. The preferred Route that emerged from this analysis on the basis of soils and geology alone was Route Corridor Option 1.1. The worst Route was the southern Route Corridor Option 1.5.

In overall terms Route Corridor 1.1 is the preferred Route Corridor option with Route Corridor 1.4 the least preferred.

Section 2
Similarly the route corridors of Section 2 were compared on geotechnical criteria of the length of the Route that passed through or impacted a) soft alluvium b) peat and fen deposits and c) licensed waste permit sites. The Shannon bridge crossing is not applicable to this section.

Route Corridor Option 2.1 was the least impacted by peat and fen areas, as only approximately 8% of the entire length passed through these unfavourable ground conditions. In contrast Route Corridor Options 2.2 and 2.3 have approximately 23% of their total length affected by these ground conditions.

Route Corridor Options 2.2 and 2.3 pass very close to a licensed waste permit site; this area is more extensive than the waste permit site located on Route Corridor option 2.1.

Overall Route Corridor Option 2.1 emerged as the preferred route, based on the soils and geology of the region, while Route Corridor Option 2.3 emerged as the least favourable.

Hydrology
The attributes and impacts that are assessed for each route corridor include:

- Watercourses crossed by each route and potential impact on water quality arising from re-alignment works and discharge of surface water run-off;
- Aquatic ecological sites close to and downstream of water crossings;
- Surface water abstraction close to and downstream of water crossings;
- Established amenity value of surface waters traversed by each route corridor; and
- Potential increase (or reduction) in flood risk to existing properties and infrastructure.

Based on this assessment Route Corridor Option 1.4 is the preferred option, while Route Corridor Option 1.5 is the least preferred Option. No preferable route corridor option is identified for Section 2, all route corridor options being considered equal.

Hydrogeology
The attributes and impacts that are assessed for each route corridor with respect to hydrogeology include:
• High yielding water supply springs and wells along each route corridor and increased risk presented by the road scheme;
• The classification (regionally important, locally important, poor) and extent of aquifers underlying each route corridor and increased risks presented to them by the road scheme (associated with aspects such as removal of subsoil cover, removal of aquifer (in whole or part), drawdown in water levels, alteration in established flow regimes, change in groundwater quality);
• Natural hydrogeological / karst features along each route corridor and the increased risk presented by the road scheme, and
• Groundwater fed ecosystems and the increased risk presented by the road scheme.

Estimation of the importance of hydrogeological attributes is based on criteria for rating site attributes as outlined in the NRA publication ‘Guidelines on Procedures for Assessment and Treatment of Geology, Hydrology and Hydrogeology for National Road Schemes’.

As with hydrology, based on this assessment the preferred option in Section 1 is Route Corridor Option 1.4, the least preferred option is Route Corridor Option 1.3 and then 1.5. Again there is no discernible difference between the three route corridor options in Section 2.

17.0 Traffic

Analysis of the Local Area Traffic Model developed for the scheme highlights the following findings:
• The greatest journey time savings are made on Route Corridor Option 1.2 and the least time savings are made on Route Corridor Option 1.4 during the morning peak period. Route Corridor Option 1.2 has more than 50% better journey time savings when compared to Route Corridor Option 1.4.
• The bypass route corridor option with the minimum traffic flow in the design year is Route Corridor Option 1.4, which would have an estimated (high growth) AADT of 5,300. The bypass route corridor option with the maximum traffic flow in the design year is Route Corridor Option 1.3, which would have an estimated (high growth) AADT of 10,700.
• Considerably less traffic will divert to Route Corridor Options 1.4 and 1.5 (southern options) compared to Route Corridor Options 1.1, 1.2 and 1.3 (northern options). This is mostly due to the significance of a connection with the R280 north of Carrick-on-Shannon.
• There will be considerably more through traffic diverted from the Town Centre and the existing N4 Shannon Bridge if any of the Northern Route Corridor Options (1.1, 1.2 or 1.3) are chosen as the preferred option. The main reason for this is that the bypass to the north of Carrick-On-Shannon would facilitate direct movements between the R280 and the bypass, where a significant amount of traffic would access the Town from the north and traffic to and from the R280 would divert from the Town Centre.
18.0 Development of the Emerging Preferred Route Corridor

In accordance with the Project Appraisal Guidelines and the Project management Guidelines a Project Appraisal balance Sheet has been used to comparatively assess the Route Corridor Options.

In order to select an Emerging Preferred Route Corridor a decision tree was used to select the preferred Route Corridor within each decision. This was developed as a six step process as described below:

Step 1
Divide scheme into two distinct sections with common nodes:
Section 1 Node A to Node B
Section 2 Node B to Node C

Step 2
Section 1 – Select Preferred Northern Route Corridor
(Route Corridor 1.1, 1.2 or 1.3)

Step 3
Section 1 – Select Preferred Southern Route Corridor
(Route Corridor 1.4 or 1.5)

Step 4
Section 1 – Compare two competing route corridors
(Route Corridor 1.2 and 1.5)

Step 5
Section 2 – Select Preferred Online Retrofit Route Corridor
(Route Corridor 2.2 or 2.3)

Step 6
Section 2 – Compare two remaining competing Route Corridors
(Route Corridor 2.1 and 2.2)

Following the above six steps the Emerging Preferred Route Corridor was selected as a combination of Route Corridor 1.2 in Section 1 and Route Corridor 2.2 in Section 2.

19.0 Public Consultation No. 3

To be completed following Public Consultation No. 3.

20.0 Recommendations

To be completed following Public Consultation No. 3.